miércoles, 7 de octubre de 2009

domingo, 13 de septiembre de 2009

TIPOS DE VARIABLES

Variables y atributos.

Como hemos visto, los caracteres de un elemento pueden ser de muy diversos tipos, por lo que los podemos clasificar en: dos grandes clases:

Variables Cuantitativas.

Variables Cualitativas o Atributos.


Las variables cuantitativas son las que se describen por medio de números, como por ejemplo el peso, Altura, Edad, Número de Suspensos…

A su vez este tipo de variables se puede dividir en dos subclases:


Cuantitativas discretas. Aquellas a las que se les puede asociar un número entero, es decir, aquellas que por su naturaleza no admiten un fraccionamiento de la unidad, por ejemplo número de hermanos, páginas de un libro, etc.


Cuantitativas continuas: Aquellas que no se pueden expresar mediante un número entero, es decir, aquellas que por su naturaleza admiten que entre dos valores cualesquiera la variable pueda tomar cualquier valor intermedio, por ejemplo peso, tiempo. etc.

No obstante en muchos casos el tratamiento estadístico hace que a variables discretas las trabajemos como si fuesen continuas y viceversa.

Los atributos son aquellos caracteres que para su definición precisan de palabras, es decir, no le podemos asignar un número. Por ejemplo Sexo Profesión, Estado Civil, etc.

A su vez las podemos clasificar en:


Ordenables: Aquellas que sugieren una ordenación, por ejemplo la graduación militar, El nivel de estudios, etc.


No ordenables: Aquellas que sólo admiten una mera ordenación alfabética, pero no establece orden por su naturaleza, por ejemplo el color de pelo, sexo, estado civil, etc.
(Recuperado el día 11 de Septiembre de 2009, en: http://thales.cica.es/rd/Recursos/rd97/UnidadesDidacticas/53-1-u-punt11.html#seccion2)

CONCEPTOS BÁSICOS

Población, elementos y caracteres.

Es obvio que todo estudio estadístico ha de estar referido a un conjunto o colección de personas o cosas. Este conjunto de personas o cosas es lo que denominaremos población.

Las personas o cosas que forman parte de la población se denominan elementos. En sentido estadístico un elemento puede ser algo con existencia real, como un automóvil o una casa, o algo más abstracto como la temperatura, un voto, o un intervalo de tiempo.

A su vez, cada elemento de la población tiene una serie de características que pueden ser objeto del estudio estadístico. Así por ejemplo si consideramos como elemento a una persona, podemos distinguir en ella los siguientes caracteres:

Sexo, Edad, Nivel de estudios, Profesión, Peso, Altura, Color de pelo,Etc.

Luego por tanto de cada elemento de la población podremos estudiar uno o más aspectos cualidades o caracteres.

La población puede ser según su tamaño de dos tipos:

Población finita: cuando el número de elementos que la forman es finito, por ejemplo el número de alumnos de un centro de enseñanza, o grupo clase.

Población infinita: cuando el número de elementos que la forman es infinito, o tan grande que pudiesen considerarse infinitos.. Como por ejemplo si se realizase un estudio sobre los productos que hay en el mercado. Hay tantos y de tantas calidades que esta población podría considerarse infinita.


Ahora bien, normalmente en un estudio estadístico, no se puede trabajar con todos los elementos de la población sino que se realiza sobre un subconjunto de la misma. Este subconjunto puede ser una muestra, cuando se toman un determinado número de elementos de la población, sin que en principio tengan nada en común; o una subpoblación, que es el subconjunto de la población formado por los elementos de la población que comparten una determinada característica, por ejemplo de los alumnos del centro la subpoblación formada por los alumnos de 3º ESO, o la subpoblación de los varones.



Variables y atributos.

Como hemos visto, los caracteres de un elemento pueden ser de muy diversos tipos, por lo que los podemos clasificar en: dos grandes clases:

Variables Cuantitativas.

Variables Cualitativas o Atributos.


Las variables cuantitativas son las que se describen por medio de números, como por ejemplo el peso, Altura, Edad, Número de Suspensos…

A su vez este tipo de variables se puede dividir en dos subclases:


Cuantitativas discretas. Aquellas a las que se les puede asociar un número entero, es decir, aquellas que por su naturaleza no admiten un fraccionamiento de la unidad, por ejemplo número de hermanos, páginas de un libro, etc.


Cuantitativas continuas: Aquellas que no se pueden expresar mediante un número entero, es decir, aquellas que por su naturaleza admiten que entre dos valores cualesquiera la variable pueda tomar cualquier valor intermedio, por ejemplo peso, tiempo. etc.

No obstante en muchos casos el tratamiento estadístico hace que a variables discretas las trabajemos como si fuesen continuas y viceversa.

Los atributos son aquellos caracteres que para su definición precisan de palabras, es decir, no le podemos asignar un número. Por ejemplo Sexo Profesión, Estado Civil, etc.

A su vez las podemos clasificar en:


Ordenables
: Aquellas que sugieren una ordenación, por ejemplo la graduación militar, El nivel de estudios, etc.


No ordenables: Aquellas que sólo admiten una mera ordenación alfabética, pero no establece orden por su naturaleza, por ejemplo el color de pelo, sexo, estado civil, etc.

TIPOS DE MUESTREO

TIPOS DE MUESTREO:

Existen diferentes criterios de clasificación de los diferentes tipos de muestreo, aunque en general pueden dividirse en dos grandes grupos: métodos de muestreo probabilísticos y métodos de muestreo no probabilísticos.

I. Muestreo probabilístico

Los métodos de muestreo probabilísticos son aquellos que se basan en el principio de equiprobabilidad. Es decir, aquellos en los que todos los individuos tienen la misma probabilidad de ser elegidos para formar parte de una muestra y, consiguientemente, todas las posibles muestras de tamaño n tienen la misma probabilidad de ser seleccionadas. Sólo estos métodos de muestreo probabilísticos nos aseguran la representatividad de la muestra extraída y son, por tanto, los más recomendables. Dentro de los métodos de muestreo probabilísticos encontramos los siguientes tipos:

1.- Muestreo aleatorio simple:

El procedimiento empleado es el siguiente: 1) se asigna un número a cada individuo de la población y 2) a través de algún medio mecánico (bolas dentro de una bolsa, tablas de números aleatorios, números aleatorios generados con una calculadora u ordenador, etc.) se eligen tantos sujetos como sea necesario para completar el tamaño de muestra requerido.
Este procedimiento, atractivo por su simpleza, tiene poca o nula utilidad práctica cuando la población que estamos manejando es muy grande.

2.- Muestreo aleatorio sistemático:

Este procedimiento exige, como el anterior, numerar todos los elementos de la población, pero en lugar de extraer n números aleatorios sólo se extrae uno. Se parte de ese número aleatorio i, que es un número elegido al azar, y los elementos que integran la muestra son los que ocupa los lugares i, i+k, i+2k, i+3k,...,i+(n-1)k, es decir se toman los individuos de k en k, siendo k el resultado de dividir el tamaño de la población entre el tamaño de la muestra: k= N/n. El número i que empleamos como punto de partida será un número al azar entre 1 y k.

El riesgo este tipo de muestreo está en los casos en que se dan periodicidades en la población ya que al elegir a los miembros de la muestra con una periodicidad constante (k) podemos introducir una homogeneidad que no se da en la población. Imaginemos que estamos seleccionando una muestra sobre listas de 10 individuos en los que los 5 primeros son varones y los 5 últimos mujeres, si empleamos un muestreo aleatorio sistemático con k=10 siempre seleccionaríamos o sólo hombres o sólo mujeres, no podría haber una representación de los dos sexos.

3.- Muestreo aleatorio estratificado:

Trata de obviar las dificultades que presentan los anteriores ya que simplifican los procesos y suelen reducir el error muestral para un tamaño dado de la muestra. Consiste en considerar categorías típicas diferentes entre sí (estratos) que poseen gran homogeneidad respecto a alguna característica (se puede estratificar, por ejemplo, según la profesión, el municipio de residencia, el sexo, el estado civil, etc.). Lo que se pretende con este tipo de muestreo es asegurarse de que todos los estratos de interés estarán representados adecuadamente en la muestra. Cada estrato funciona independientemente, pudiendo aplicarse dentro de ellos el muestreo aleatorio simple o el estratificado para elegir los elementos concretos que formarán parte de la muestra. En ocasiones las dificultades que plantean son demasiado grandes, pues exige un conocimiento detallado de la población. (Tamaño geográfico, sexos, edades,...).

La distribución de la muestra en función de los diferentes estratos se denomina afijación, y puede ser de diferentes tipos:

Afijación Simple: A cada estrato le corresponde igual número de elementos muéstrales.

Afijación Proporcional: La distribución se hace de acuerdo con el peso (tamaño) de la población en cada estrato.

Afijación Optima: Se tiene en cuenta la previsible dispersión de los resultados, de modo que se considera la proporción y la desviación típica. Tiene poca aplicación ya que no se suele conocer la desviación.

4.- Muestreo aleatorio por conglomerados:

Los métodos presentados hasta ahora están pensados para seleccionar directamente los elementos de la población, es decir, que las unidades muéstrales son los elementos de la población. En el muestreo por conglomerados la unidad muestral es un grupo de elementos de la población que forman una unidad, a la que llamamos conglomerado.

Las unidades hospitalarias,los departamentos universitarios, una caja de determinado producto, etc., son conglomerados naturales. En otras ocasiones se pueden utilizar conglomerados no naturales como, por ejemplo, las urnas electorales.

Cuando los conglomerados son áreas geográficas suele hablarse de "muestreo por áreas". El muestreo por conglomerados consiste en seleccionar aleatoriamente un cierto numero de conglomerados (el necesario para alcanzar el tamaño muestral establecido) y en investigar después todos los elementos pertenecientes a los conglomerados elegidos.

5. Muetreo Causal.

Este tipo de muestreo es sencillo de comprender, pues se define con la selección de datos que se concentran por una causa definida y común, como por ejemplo los datos que podemos tener de una entrevista a profesores al estar presentes en una reunión sindical, ellos se concentraron por una razón común y por una causa definida.


II. Métodos de muestreo no probabilísticos

A veces, para estudios exploratorios, el muestreo probabilístico resulta excesivamente costoso y se acude a métodos no probabilísticos, aun siendo conscientes de que no sirven para realizar generalizaciones (estimaciones inferenciales sobre la población), pues no se tiene certeza de que la muestra extraída sea representativa, ya que no todos los sujetos de la población tienen la misma probabilidad de se elegidos. En general se seleccionan a los sujetos siguiendo determinados criterios procurando, en la medida de lo posible, que la muestra sea representativa.

En algunas circunstancias los métodos estadísticos y epidemiológicos permiten resolver los problemas de representatividad aun en situaciones de muestreo no probabilístico, por ejemplo los estudios de caso-control, donde los casos no son seleccionados aleatoriamente de la población. Entre los métodos de muestreo no probabilísticos más utilizados en investigación encontramos:

1.- Muestreo por cuotas:

También denominado en ocasiones "accidental". Se asienta generalmente sobre la base de un buen conocimiento de los estratos de la población y/o de los individuos más "representativos" o "adecuados" para los fines de la investigación. Mantiene, por tanto, semejanzas con el muestreo aleatorio estratificado, pero no tiene el carácter de aleatoriedad de aquél.

En este tipo de muestreo se fijan unas "cuotas" que consisten en un número de individuos que reúnen unas determinadas condiciones, por ejemplo: 20 individuos de 25 a 40 años, de sexo femenino y residentes en Gijón. Una vez determinada la cuota se eligen los primeros que se encuentren que cumplan esas características. Este método se utiliza mucho en las encuestas de opinión.

2.- Muestreo intencional o de conveniencia:

Este tipo de muestreo se caracteriza por un esfuerzo deliberado de obtener muestras "representativas" mediante la inclusión en la muestra de grupos supuestamente típicos. Es muy frecuente su utilización en sondeos preelectorales de zonas que en anteriores votaciones han marcado tendencias de voto. También puede ser que el investigador seleccione directa e intencionadamente los individuos de la población. El caso más frecuente de este procedimiento el utilizar como muestra los individuos a los que se tiene fácil acceso (los profesores de universidad emplean con mucha frecuencia a sus propios alumnos).


3.- Bola de nieve:

Se localiza a algunos individuos, los cuales conducen a otros, y estos a otros, y así hasta conseguir una muestra suficiente. Este tipo se emplea muy frecuentemente cuando se hacen estudios con poblaciones "marginales", delincuentes, sectas, determinados tipos de enfermos, etc.

4.- Muestreo Discrecional

· A criterio del investigador los elementos son elegidos sobre lo que él cree que pueden aportar al estudio.

MÉTODO ESTADÍSTICO

• El conjunto de los métodos que se utilizan para medir las características de la información, para resumir los valores individuales, y para analizar los datos a fin de extraerles el máximo de información, es lo que se llama métodos estadísticos. Los métodos de análisis para la información cuantitativa se pueden dividir en los siguientes seis pasos:

• 1. Definición del problema.

• 2. Recopilación de la información existente.

• 3. Obtención de información original.

• 4. Clasificación.

• 5. Presentación.

• 6. Análisis.

• Errores Estadísticos Comunes

• Al momento de recopilar los datos que serán procesados se es susceptible de cometer errores así como durante los cómputos de los mismos. No obstante, hay otros errores que no tienen nada que ver con la digitación y que no son tan fácilmente identificables. Algunos de éstos errores son:

• Sesgo: Es imposible ser completamente objetivo o no tener ideas preconcebidas antes de comenzar a estudiar un problema, y existen muchas maneras en que una perspectiva o estado mental pueda influir en la recopilación y en el análisis de la información. En estos casos se dice que hay un sesgo cuando el individuo da mayor peso a los datos que apoyan su opinión que a aquellos que la contradicen. Un caso extremo de sesgo sería la situación donde primero se toma una decisión y después se utiliza el análisis estadístico para justificar la decisión ya tomada.

• Datos no comparables: el establecer comparaciones es una de las partes más importantes del análisis estadístico, pero es extremadamente importante que tales comparaciones se hagan entre datos que sean comparables.

• Proyección descuidada de tendencias: la proyección simplista de tendencias pasadas hacia el futuro es uno de los errores que más ha desacreditado el uso del análisis estadístico.

• Muestreo Incorrecto: en la mayoría de los estudios sucede que el volumen de información disponible es tan inmenso que se hace necesario estudiar muestras, para derivar conclusiones acerca de la población a que pertenece la muestra. Si la muestra se selecciona correctamente, tendrá básicamente las mismas propiedades que la población de la cual fue extraída; pero si el muestreo se realiza incorrectamente, entonces puede suceder que los resultados no signifiquen nada

DIVISIÓN DE LA ESTADÍSTICA

• División de la Estadística

• La Estadística para su mejor estudio se ha dividido en dos grandes ramas: la Estadística Descriptiva y la Inferencial.

Estadística Descriptiva: consiste sobre todo en la presentación de datos en forma de tablas y gráficas. Esta comprende cualquier actividad relacionada con los datos y está diseñada para resumir o describir los mismos sin factores pertinentes adicionales; esto es, sin intentar inferir nada que vaya más allá de los datos, como tales.

Estadística Inferencial: se deriva de muestras, de observaciones hechas sólo acerca de una parte de un conjunto numeroso de elementos y esto implica que su análisis requiere de generalizaciones que van más allá de los datos. Como consecuencia, la característica más importante del reciente crecimiento de la estadística ha sido un cambio en el énfasis de los métodos que describen a métodos que sirven para hacer generalizaciones. La Estadística Inferencial investiga o analiza una población partiendo de una muestra tomada.

ETAPAS DEL DESARROLLO DE LA ESTADÍSTICA

Desarrollo de la Estadística

• La historia de la estadística está resumida en tres grandes etapas o fases.


• 1.- Primera Fase: Los Censos:

• Desde el momento en que se constituye una autoridad política, la idea de inventariar de una forma más o menos regular la población y las riquezas existentes en el territorio está ligada a la conciencia de soberanía y a los primeros esfuerzos administrativos.

• 2.- Segunda Fase: De la Descripción de los Conjuntos a la Aritmética Política:

• Las ideas mercantilistas extrañan una intensificación de este tipo de investigación. Colbert multiplica las encuestas sobre artículos manufacturados, el comercio y la población: los intendentes del Reino envían a París sus memorias. Vauban, más conocido por sus fortificaciones o su Dime Royale, que es la primera propuesta de un impuesto sobre los ingresos, se señala como el verdadero precursor de los sondeos. Más tarde, Bufón se preocupa de esos problemas antes de dedicarse a la historia natural.

• La escuela inglesa proporciona un nuevo progreso al superar la fase puramente descriptiva. Sus tres principales representantes son Graunt, Petty y Halley. El penúltimo es autor de la famosa Aritmética Política.

• Chaptal, ministro del interior francés, publica en 1801 el primer censo general de población, desarrolla los estudios industriales, de las producciones y los cambios, haciéndose sistemáticos durantes las dos terceras partes del siglo XIX.

• 3.- Tercera Fase: Estadística y Cálculo de Probabilidades:

• El cálculo de probabilidades se incorpora rápidamente como un instrumento de análisis extremadamente poderoso para el estudio de los fenómenos económicos y sociales y en general para el estudio de fenómenos “cuyas causas son demasiados complejas para conocerlos totalmente y hacer posible su análisis”.

ESTAMOS DESARROLLANDO UNA NUEVA FASE.

HISTORIA DE LA ESTADÍSTICA

ESTADÍSTICA:

• Como dijera Huntsberger: "La palabra estadística a menudo nos trae a la mente imágenes de números apilados en grandes arreglos y tablas, de volúmenes de cifras relativas a nacimientos, muertes, impuestos, poblaciones, ingresos, deudas, créditos y así sucesivamente. Huntsberger tiene razón pues al instante de escuchar esta palabra estas son las imágenes que llegan a nuestra cabeza.

• La Estadística es mucho más que sólo números apilados y gráficas bonitas. Es una ciencia con tanta antigüedad como la escritura, y es por sí misma auxiliar de todas las demás ciencias. Los mercados, la medicina, la ingeniería, los gobiernos, etc. Se nombran entre los más destacados clientes de ésta.

• La ausencia de ésta conllevaría a un caos generalizado, dejando a los administradores y ejecutivos sin información vital a la hora de tomar decisiones en tiempos de incertidumbre.

• La Estadística que conocemos hoy en día debe gran parte de su realización a los trabajos matemáticos de aquellos hombres que desarrollaron la teoría de las probabilidades, con la cual se adhirió a la Estadística a las ciencias formales.

• En este breve material se expone los conceptos, la historia, la división así como algunos errores básicos cometidos al momento de analizar datos Estadísticos.

Definición de Estadística

• La Estadística es la ciencia cuyo objetivo es reunir una información cuantitativa concerniente a individuos, grupos, series de hechos, etc. y deducir de ello gracias al análisis de estos datos unos significados precisos o unas previsiones para el futuro.

• La estadística, en general, es la ciencia que trata de la recopilación, organización presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva.

• Otros autores tienen definiciones de la Estadística semejantes a las anteriores, y algunos otros no tan semejantes. Para Chacón esta se define como “la ciencia que tiene por objeto el estudio cuantitativo de los colectivos”; otros la definen como la expresión cuantitativa del conocimiento dispuesta en forma adecuada para el escrutinio y análisis. La más aceptada, sin embargo, es la de Minguez, que define la Estadística como “La ciencia que tiene por objeto aplicar las leyes de la cantidad a los hechos sociales para medir su intensidad, deducir las leyes que los rigen y hacer su predicción próxima”.

• Los estudiantes confunden comúnmente los demás términos asociados con las Estadísticas, una confusión que es conveniente aclarar debido a que esta palabra tiene tres significados: la palabra estadística, en primer término se usa para referirse a la información estadística; también se utiliza para referirse al conjunto de técnicas y métodos que se utilizan para analizar la información estadística; y el término estadístico, en singular y en masculino, se refiere a una medida derivada de una muestra.

• Utilidad e Importancia

• Los métodos estadísticos tradicionalmente se utilizan para propósitos descriptivos, para organizar y resumir datos numéricos. La estadística descriptiva, por ejemplo trata de la tabulación de datos, su presentación en forma gráfica o ilustrativa y el cálculo de medidas descriptivas.

• Ahora bien, las técnicas estadísticas se aplican de manera amplia en mercadotecnia, contabilidad, control de calidad y en otras actividades; estudios de consumidores; análisis de resultados en deportes; administradores de instituciones; en la educación; organismos políticos; médicos; y por otras personas que intervienen en la toma de decisiones.

Historia de la Estadística

• Los comienzos de la estadística pueden ser hallados en el antiguo Egipto, cuyos faraones lograron recopilar, hacia el año 3050 antes de Cristo, prolijos datos relativos a la población y la riqueza del país. De acuerdo al historiador griego Heródoto, dicho registro de riqueza y población se hizo con el objetivo de preparar la construcción de las pirámides. En el mismo Egipto, Ramsés II hizo un censo de las tierras con el objeto de verificar un nuevo reparto.

• En el antiguo Israel la Biblia da referencias, en el libro de los Números, de los datos estadísticos obtenidos en dos recuentos de la población hebrea. El rey David por otra parte, ordenó a Joab, general del ejército hacer un censo de Israel con la finalidad de conocer el número de la población.

• También los chinos efectuaron censos hace más de cuarenta siglos. Los griegos efectuaron censos periódicamente con fines tributarios, sociales (división de tierras) y militares (cálculo de recursos y hombres disponibles). La investigación histórica revela que se realizaron 69 censos para calcular los impuestos, determinar los derechos de voto y ponderar la potencia guerrera.

• Pero fueron los romanos, maestros de la organización política, quienes mejor supieron emplear los recursos de la estadística. Cada cinco años realizaban un censo de la población y sus funcionarios públicos tenían la obligación de anotar nacimientos, defunciones y matrimonios, sin olvidar los recuentos periódicos del ganado y de las riquezas contenidas en las tierras conquistadas. Para el nacimiento de Cristo sucedía uno de estos empadronamientos de la población bajo la autoridad del imperio.

• Durante los mil años siguientes a la caída del imperio Romano se realizaron muy pocas operaciones Estadísticas, con la notable excepción de las relaciones de tierras pertenecientes a la Iglesia, compiladas por Pipino el Breve en el 758 y por Carlomagno en el 762 DC. Durante el siglo IX se realizaron en Francia algunos censos parciales de siervos. En Inglaterra, Guillermo el Conquistador recopiló el Domesday Book o libro del Gran Catastro para el año 1086, un documento de la propiedad, extensión y valor de las tierras de Inglaterra. Esa obra fue el primer compendio estadístico de Inglaterra.

• Aunque Carlomagno, en Francia; y Guillermo el Conquistador, en Inglaterra, trataron de revivir la técnica romana, los métodos estadísticos permanecieron casi olvidados durante la Edad Media.

• Durante los siglos XV, XVI, y XVII, hombres como Leonardo de Vinci, Nicolás Copérnico, Galileo, Neper, William Harvey, Sir Francis Bacon y René Descartes, hicieron grandes operaciones al método científico, de tal forma que cuando se crearon los Estados Nacionales y surgió como fuerza el comercio internacional existía ya un método capaz de aplicarse a los datos económicos.

• Para el año 1532 empezaron a registrarse en Inglaterra las defunciones debido al temor que Enrique VII tenía por la peste. Más o menos por la misma época, en Francia la ley exigió a los clérigos registrar los bautismos, fallecimientos y matrimonios. Durante un brote de peste que apareció a fines de la década de 1500, el gobierno inglés

• comenzó a publicar estadística semanales de los decesos. Esa costumbre continuó muchos años, y en 1632 estos Bills of Mortality (Cuentas de Mortalidad) contenían los nacimientos y fallecimientos por sexo. En 1662, el capitán John Graunt usó documentos que abarcaban treinta años y efectuó predicciones sobre el número de personas que morirían de varias enfermedades y sobre las proporciones de nacimientos de varones y mujeres que cabría esperar. El trabajo de Graunt, condensado en su obra Natural and Political Observations...Made upon the Bills of Mortality (Observaciones Políticas y Naturales ... Hechas a partir de las Cuentas de Mortalidad), fue un esfuerzo innovador en el análisis estadístico.

• Por el año 1540 el alemán Sebastián Muster realizó una compilación estadística de los recursos nacionales, comprensiva de datos sobre organización política, instrucciones sociales, comercio y poderío militar. Durante el siglo XVII aportó indicaciones más concretas de métodos de observación y análisis cuantitativo y amplió los campos de la inferencia y la teoría Estadística.

• Los eruditos del siglo XVII demostraron especial interés por la Estadística Demográfica como resultado de la especulación sobre si la población aumentaba, decrecía o permanecía estática.

• En los tiempos modernos tales métodos fueron resucitados por algunos reyes que necesitaban conocer las riquezas monetarias y el potencial humano de sus respectivos países. El primer empleo de los datos estadísticos para fines ajenos a la política tuvo lugar en 1691 y estuvo a cargo de Gaspar Neumann, un profesor alemán que vivía en Breslau. Este investigador se propuso destruir la antigua creencia popular de que en los años terminados en siete moría más gente que en los restantes, y para lograrlo hurgó pacientemente en los archivos parroquiales de la ciudad. Después de revisar miles de partidas de defunción pudo demostrar que en tales años no fallecían más personas que en los demás. Los procedimientos de Neumann fueron conocidos por el astrónomo inglés Halley, descubridor del cometa que lleva su nombre, quien los aplicó al estudio de la vida humana. Sus cálculos sirvieron de base para las tablas de mortalidad que hoy utilizan todas las compañías de seguros.

• Durante el siglo XVII y principios del XVIII, matemáticos como Bernoulli, Francis Maseres, Lagrange y Laplace desarrollaron la teoría de probabilidades. No obstante durante cierto tiempo, la teoría de las probabilidades limitó su aplicación a los juegos de azar y hasta el siglo XVIII no comenzó a aplicarse a los grandes problemas científicos.

• Godofredo Achenwall, profesor de la Universidad de Gotinga, acuñó en 1760 la palabra estadística, que extrajo del término italiano statista (estadista). Creía, y con sobrada razón, que los datos de la nueva ciencia serían el aliado más eficaz del gobernante consciente. La raíz remota de la palabra se halla, por otra parte, en el término latino status, que significa estado o situación; Esta etimología aumenta el valor intrínseco de la palabra, por cuanto la estadística revela el sentido cuantitativo de las más variadas situaciones.

• Jacques Quételect es quien aplica las Estadísticas a las ciencias sociales. Este interpretó la teoría de la probabilidad para su uso en las ciencias sociales y resolver la aplicación del principio de promedios y de la variabilidad a los fenómenos sociales. Quételect fue el primero en realizar la aplicación práctica de todo el método Estadístico, entonces conocido, a las diversas ramas de la ciencia.

• Entretanto, en el período del 1800 al 1820 se desarrollaron dos conceptos matemáticos fundamentales para la teoría Estadística; la teoría de los errores de observación, aportada por Laplace y Gauss; y la teoría de los mínimos cuadrados desarrollada por Laplace, Gauss y Legendre. A finales del siglo XIX, Sir Francis Gaston ideó el método conocido por Correlación, que tenía por objeto medir la influencia relativa de los factores sobre las variables. De aquí partió el desarrollo del coeficiente de correlación creado por Karl Pearson y otros cultivadores de la ciencia biométrica como J. Pease Norton, R. H. Hooker y G. Udny Yule, que efectuaron amplios estudios sobre la medida de las relaciones.

• Los progresos más recientes en el campo de la Estadística se refieren al ulterior desarrollo del cálculo de probabilidades, particularmente en la rama denominada indeterminismo o relatividad, se ha demostrado que el determinismo fue reconocido en la Física como resultado de las investigaciones atómicas y que este principio se juzga aplicable tanto a las ciencias sociales como a las físicas.

TIPOS DE GRÁFICAS

TIPOS DE GRÁFICAS:

1. La representación de datos de forma gráfica ofrece mensajes mas claros donde las conclusiones son faciles de entender.

Aquello de que una imagen vale más que mil palabras sigue siendo cierto. En la era de internet se han dado varios pasos en la accesibilidad a la informacion, pero se han dado varios pasos atras en la facilidad de encontrar cosas, entender el contexto y extraer conclusiones.

La representación de datos de forma gráfica ayuda a presentar datos de forma sencilla donde las conclusiones son fáciles de entender. Mapas del tiempo, evolución de la bolsa, el volumen de la televisión son ejemplos de datos representados con gráficos que dificílmente los podemos imaginar en otro formato.

Muchos datos recogidos a traves de internet deberan ser procesados y representados por gráficos para que sirvan de alguna ayuda. Comparativas de productos, valoración de sites, evolución del tráfico, buscadores, favoritos, uso del e-mail.

El principal problema que tiene la representación de datos es su objetividad y comprensión. El proceso de la información requiere tomar decisiones sobre que ejes se tendran en cuenta, periodo a mostrar, comparar o no, etc... Estas decisiones pueden hacer que la representación ofrecida no sea la que la audiencia espera. Por otro lado que el gráfico sea fácilmente comprensible requerira una cierto "ensayo y error" hasta encontrar el modelo perfecto.

El disponer de la capacidad de proceso junto a un tiempo de "ensayo y error" harán que la informacion sea mas fácil de entender y por tanto la toma de decisiones se hara con mayor seguridad y mas rápido. Quizas suene un poco a complicado y caro, pero la representación de datos se puede hacer desde un presupuesto "cero" usando herramientas como Excel o Illustrator.

Tipos de gráficos (diferencias, usos).

PARA VISUALIZAR LA MUESTRA DE GRÁFICAS DA DOBLE CLIKC SOBRE LA IMAGEN.



DESCRIPCIÓN DEL TEXTO EN LA IMAGEN DE ARRIBA.

Barras

Este gráfico sirve para comparar datos entre diferentes segmentos (sectores, empresas, periodos de tiempo...).

Lineas

Ayudan a ver la evolución de los datos. Por lo general se usan para mostrar un mismo tipo de dato y su evolución (valor de la accion y el tiempo, número de ventas y precio).

Tartas

Aquí podemos ver la contribución de cada parte a un total. Este gráfico se puede utilizar de forma creativa comparando el tamaño de las tartas entre sí y el contenido de las mismas.

Radar

En el radar podemos ver la superficie creada por varias variables y asi poder comparar entidades (dos productos que presentan varias características pueden ser comparados en su totalidad usando esta gráfica).

Stocks

Aquí se representan datos con 4 variables (tiempo, máximo, mínimo y cierre).

Burbujas

Aquí el grid (lineas de división del eje) suele ser una variable por si misma, haciendo que la disposición de las burbujas represente otras variables junto al propio tamaño de la burbuja. Este tipo de gráficas permite concentrar mucha información en poco espacio.

Superficies

Este gráfico se suele usar para ver la evolución de un dato sujeto a 3 variables. Por ejemplo la dureza de un material dependiendo de la temperatura, densidad y volumen.

Es importante dominar la presentación para mostrar un mensaje fácil de entender. El no ofrecer una conclusión clara hacen que las gráficas pierdan su fuerza en nuestra comunicación.


3. Usando excel se pueden obtener gráficos presentables (pero hay que modificar lo que nos sale por defecto).

Un gráfico presentado en excel suele tener un aspecto similar a esto.

El uso del 3d.

El 3d le puede dar un aspecto mas molon a los gráficos, pero hace que la informacion sea difícil de leer y cueste extraer las diferencias. Gráficos en 3d tienen usos muy limitados (solo en el ejemplo de superficies estan recomendados). Mejor utilizar gráficos en 2d. El mensaje quedará más claro y fácil de entender.

El fondo, el "grid" y demás lineas.

Para que los gráficos brillen lo mejor es disponer de un fondo y un grid de color suave (blanco o grises). Las lineas que contornean al gráfico lo mejor es eliminarlas para evitar añadir elementos superflueos al gráfico.

Un truco para simplificar el fondo es poner el grid de color blanco sobre el gráfico de tal forma que solo sea visible cuando lo toca dejando el resto del fondo blanco.
Colores.

Sobre los colores a usar en la grafica, lo mejor es experimentar un poco hasta encontrar el contraste necesario. En algunos casos colores diferentes son adecuados, el mismo color pero con diferentes valores tambien puede ayudar. Evitar demasiado contraste o vibración (rojo y verde, rojo y azul...) hará que la gráfica sea fácil de leer. Ver ejemplos.

Espesor.

Edward Tufte tiene una regla sobre la relación entre la cantidad de tinta empleada y la información mostrada. Esta regla hace referencia a que en muchos casos, se emplea mucha tinta para mostrar poca información haciendo las barras espesas, usando degradados, colores sólidos en el fondo, etc... Se debe tender a minimizar el uso de tinta por dato mostrado, empleando barras mas finas, eliminado los elementos del fondo, etc... El objetivo que se alcanza es el de optimizar la presentación para una lectura mas clara y sencilla.

Ayuda al lector.

Ahora que nuestro gráfico está limpio, podemos añadir mas información para que el entender los valores o significado sea mas sencillo.

3. Illustrator es una mejor herramienta para crear gráficas.

Si los gráficos que vas a generar van a ser presentados a una audiencia importante y/o la producción va a ser masiva, Adobe Illustrator es una mejor herramienta.

A partir de la versión 9 la producción de gráficas en Illustrator se ha simplificado mucho con la ayuda de un menú dedicado a esta tarea. Illustrator permite modificar cada parámetro de la gráfica con total control y permite una mejor exportación del gráfico a diferentes formatos, ya sea web, imprenta o power point.

Visita la página Adobe.com para tener mas Información sobre Illustrator.


(Recuperado el día 30 de Agosto de 2009 en: http://www.desarrolloweb.com/articulos/875.php)


Enlaces de interés:

• SAP Design http://www.sapdesignguild.org/resources/diagram_guidelines/index.html

• Infovis.net -> Gramática Gráfica http://www.infovis.net/Revista/Revista.htm#Entrada

• Edward Tufte | Foro Ask E.T. | Respuesta a la pregunta sobre que programa grafico utilizar. http://www.edwardtufte.com/935993499/tufte/

• Microsoft -> excel -> charts http://search.office.microsoft.com/assistance/tasks.aspx?s=xlchart&p=Excel

• Illustrator http://www.adobe.com/products/illustrator/main.html

• Builder.com (pie charts) http://builder.cnet.com/webbuilding/pages/Programming/Scripter/101899/

• Download Software para crear gráficas. http://download.cnet.com/downloads/0-4003376-100-7055408.html

• Más downloads. http://download.cnet.com/downloads/1,10150,0-3897188-103-0-1-7,00.html?tag=srch&qt=chart&cn=Software+Development&ca=3897188

• Java + charts http://download.cnet.com/downloads/0-14486-100-5236280.html

CONCEPTO DE ESTADÍSTICA

Estadística:

La estadística es comúnmente considerada como una colección de hechos numéricos expresados en términos de una relación sumisa, y que han sido recopilado a partir de otros datos numéricos.

Kendall y Buckland (citados por Gini V. Glas / Julian C. Stanley, 1980) definen la estadística como un valor resumido, calculado, como base en una muestra de observaciones que generalmente, aunque no por necesidad, se considera como una estimación de parámetro de determinada población; es decir, una función de valores de muestra.

"La estadística es una técnica especial apta para el estudio cuantitativo de los fenómenos de masa o colectivo, cuya mediación requiere una masa de observaciones de otros fenómenos más simples llamados individuales o particulares". (Gini, 1953.

Murria R. Spiegel, (1991) dice: "La estadística estudia los métodos científicos para recoger, organizar, resumir y analizar datos, así como para sacar conclusiones válidas y tomar decisiones razonables basadas en tal análisis.

"La estadística es la ciencia que trata de la recolección, clasificación y presentación de los hechos sujetos a una apreciación numérica como base a la explicación, descripción y comparación de los fenómenos". (Yale y Kendal, 1954).
Cualquiera sea el punto de vista, lo fundamental es la importancia científica que tiene la estadística, debido al gran campo de aplicación que posee.